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Abstract

Let A C Z?D be a set of size 2p + 1 for prime p > 5. In this paper, we prove that
A+A={a1+as|ai,as € A a; # as} has cardinality at least 4p. This result is the
first advancement in over two decades on a variant of the Erdés-Heilbronn problem

studied by Eliahou and Kervaire.
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1 Introduction

In an abelian group G with A, B C G we write
A+B={a+blac Abe B}
to be the sumset of A and B. Similarly, we define
AfB={a+blac Abec B,a+#b}

to be the restricted sumset of A and B. Often, we write 24 = A+ A and 2°A = A+ A.
A topic of great importance in additive combinatorics is determining the minimum size
of 2A or 2°A given that A C G has size m. This question has been answered for all
abelian groups in the unrestricted case for over twenty years now [5] but the restricted
case remains unsolved in general. More specifically, we are interested in determining the

value of the function
p(G,m) =min{|2°A| | A C G, |A| = m}.
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The cases for which the value of this function are known is very limited (see Chapter
D.3.1 in [!] for more detail). The case that we are interested in today is a subset of the
case where GG is an elementary abelian p-group for an odd prime p > 5. This case was

first studied extensively by Eliahou and Kervaire and they obtained the following results

Theorem 1.1 (Eliahou and Kervaire [3], [1]). If p > 5 is prime and p { m — 1 for
m < (p+3)/2
p(Z,,m) = 2m — 3.

Ifp|m—1 and m < (p+ 3)/2 we have that
2m — 3 < p(Z,,m) < 2m — 2.

If m = p+ 1 we have that
p(Zy,m) =2m — 2 = 2p.

This leaves m = 2p 4+ 1 as the smallest unsolved case.

In this paper, we determine that p(Zf,, 2p+1) = 4p for all prime p > 5. To do this, we
will make use of two of the most ubiquitous theorems in additive combinatorics. Before

this, we introduce the notation miny which we define as
ming(X) = max{0, min(X)}.

ie. ming(S) is equal to the minimum of S when S C R and 0 if S contains a negative

number.

Theorem 1.2 (Cauchy-Davenport Theorem ). For A, B C Z, for some prime p then we
have that
A+ B| < min{|A| + |B| - 1,p}.

Theorem 1.3 (Dias Da Silva and Hamidoune [2]). If p is prime with A, B C Z,, we have
that
[A+B| = min{|A| + |B| - 3, p}.

Furthermore, if |A| # | B| then
|A+B| > ming{|A| + |B| — 2, p}.
Our main result is as follows:

Theorem 1.4. If p > 5 is prime then

2
p(Z,,2p + 1) = 4p.
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We first establish this simple yet consequential result.

Lemma 1.5. For g € Zf, and A C ZE) we have that

2°A] = [2'(A + )]

Proof. Note that a1 = ay <= a;+9 = as+g, and so we have that 2°(A+g) = 29+ 2°A,
from which our claim follows. O]

Let H be some non-trivial proper subgroup of Z?) (ie. H = Z,). Similarly, index the
cosets of H by Hy, Hi,...,H, 1 where Hy = H and H; + H; = H,;, and index their
intersections with A such that A; = AN H; and similarly let B; = 2°A N H;. Sometimes
we may refer to these indexed sets by indices outside of the range [0,p — 1], and these
should be identified with their representative within the aforementioned interval modulo
p (ie. H; = Hypy, for all k € Z and i € [0,p — 1]).

It is obvious that )
-

2°A] =) Byl
i=0

as By, B1,..., B, is a partition of 2°A. Additionally, we see that

p—1
B, = | J(4;74:y),

j=0

and so
|B;| > max |Aj+A; .
0<j<p—1

Note that when j # i — j, A; and A;_; are disjoint and so A;4+A4, ; = A; + A;_;. Thus,
by Theorem 1.2, Theorem 1.3, and Lemma 1.5 we have that

|Bil = max {ming{[A;] +[Aij[ =1 —=2¢;;,p} |0 & {A;, Aij}} (1)
<j<p-1

where ¢;; = 1 if j =4 — j and ¢;; = 0 otherwise. Now, let o be some index for which
|An| > |A;| for all i. By the pigeonhole principle, it is seen that |A,| > 3. By Lemma
1.5, we may assume, without sacrificing generality, that a = 0 Additionally, let m be
the number of non-zero i for which A; is non-empty and let S = {1 <i <p | A; # 0}.
Similarly, let T = {1 <i <p| B; # 0}, So = SU{0} and Ty = T U {0}.

Observe that )
—

2°A] =) T |Bi| > [2740] + D Ao + Adl. (2)
i=0
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and since |A,| < |Ap| if |Ag] < (p+ 1)/2 then we have that

[2A =22 Aol + ) (1Ao] + 4, — 1)

ses

which can be taken advantage of in a multitude of ways. For this reason, we consider the
cases of |[Ag| < (p+1)/2 and |Ag| > (p + 3)/2 separately Specifically, we define Case 1:
|Ao| < EEE and Case 2: |4,| > 22

2 Case 1: |4y <2

As mentioned before, the reason we divided this problem into cases based on | Ay| is that,

no matter what, in Case 1 we have that |4;| +|A4;| — 1 < p, and so
|A; + Aj| > ming{p, |Ai| + |4;] — 1 —2¢;;} = |Ai| + 4] — 1 —2¢;
as per (1).
We will make use of the following definitions:
A={A [ |Ai| # 0},
A = {A ] 14 £, # 0}
Aw = {Ai [ [Ai] = w},
By, ={Bi | [Bi|] = w},
=4, Du=IBul,  D,=) IBl

i>w

It is clear that

P P
|A| = ZwC’w and |2°A| = Zwa.
w=1 w=1

Also observe that Now, note that D), — D! ., = D,,, and so we have that

|2°A] = ZWD Z (Dyy = Dyyi1) ZD/ (3)

w=1

Let m = |S| = |A| — 1 (ie. m is the number of non-zero ¢ for which A; is non-empty.)

By Theorem 1.3, there exists at least ming{2|.A| — 3, p} = mine{2m — 1,p} distinct



values of ¢ for which there is some X € 2°A! satisfying X C H;. In other words,

D > ming{2m — 1, p}. This is the basis for our first instance of subcases, those being

(1A) m > 2 (in which case B; must be non-empty for all i ) and

(1B) m < E1 (in which case we must have that [T\ S| > m — 2).

Before entering the subcases, we prove the following statement regarding Case 1 in

general

Lemma 2.1. In Case 1

2°A > (m+ 1)(JAol = 1) +2p— 1+ > [Byl.

1€T\S

Proof. Using (1), Theorem 1.2, and Theorem 1.3 and the fact that |4;| + [4;| — 1 <
2|Ag| — 1 < p for all i, j* we get that

D IBil = 21 Ao| =3+ (JAol + [Ai] = 1) = (m +2)|Ag| =3 —m+ > _|A]

1€S50 ies €S

= (m+2)(JAo] = 1) = 1+ > |A] = (m +2)(|Ag| = 1) = 1+ (|A] = | Ao])

€S

= (m+1)(|4] = 1) +2p — 1.

Since

2Al= ) Bl

B,eB

we have that

A =B =D [B+ > Bl = (m+1)(|Ao] - 1) +2p—1+ Y |Bi,

i€Ty i€So i€T\S ie€T\S

and so our claim is proven. O

2.1 Case 1A: m > ]%1

Lemma 2.2. In Case 1A, if |2°A| < 4p then |Ay| = 3.

!Because the elements of A are pairwise disjoint and non-empty: every element of 2°A is non-empty.
2From the fact that we are in Case 1.



Proof. As mentioned in the introduction, |Ag| > 3 by the pigeonhole principle, and so it

suffices to prove that |Ag| < 3. Indeed, since |B;| > 1 for all ¢ (implying |T| = p — 1)

with the help of Lemma 2.1 we get that

2°A] > (m+1)(JAol = 1) +2p— 1+ > [Bi| > (m+1)(JAo| — 1) +2p— 1+ (p— | A])

1€T\S
=3p+ (m+1)(|4| —2) — 1.
If indeed it is true that |2°A| < 4p then the above implies

dp—12>3p+ (m+1)(JA| —2) -1

which then gives us that

P 2p 2

Ao <2+ L <oy Py ° 4

m+1 p+3 p+3
Thus, |Ap| < 3 as it is an integer.
From this, it follows that every set in Case 1A satisfies
Co+01+02+03:p,

303—{—202—{—01:2])—{—1,

and
01+Cg+03:m+1

Lemma 2.3. In Case 1A

Di > ming{2C; + Cy + Cy — 1,p}.

Proof. Via Theorem 1.2, we have that

A‘I‘Ag - {AZ‘T'A] | Az S A, Aj € ./43}

contains members which are subsets of at least ming{|As|+|A| —1,p} = ming{2C3+ Cs+
Cy —1, p} distinct cosets. Additionally, via (1) we have that | X| > 3. for all X € A+ Aj,

and from this our claim follows®.

]

3While it is true that the elements AH—AJ» of A+ As are restricted sums, for (4;,A4;) € A x A3 we
have that A;+A; = A; + A; for |A;| # 3 implying |A;+A4;| > |A;]| + |4;] — 1> |A;| = 3, and if |4;] =3

then |AZ—T—AJ| > |Az| + |A]‘ —-3=23.



Similar arguments on
.Ag +./42 = {A,‘T‘AJ | A, S ./4.2,14]‘ S ./43} = {Az —|—AJ | Az € ./427Aj € ./43}

and

A5 ={Ai+A4; | A A € Agi £ jE = {Ai + Aj | A, Aj € As i # 5}
result in

Lemma 2.4. In Case 1A

Dﬁl 2 minO{C3 =+ CQ — 1,p}

and

Lemma 2.5. In Case 1A

respectively.

Now, we utilize these Lemmas.

Lemma 2.6. In Case 1A, if |2°A| < 4p and D3 # p then 3 > 2C5 + Cy + Cj

Proof. Since Dj # p, it follows that D}, Di # p either. Together with facts that D} = p,
D)} > Dj, Lemma 2.3, Lemma 2.4, Lemma 2.5, and (3) we get that

|2°A| > DL + D) + Dy + Dy + D} > p+ D+ Dy + 2Dy > p+ 7Cs + 3Cy + 2C — 6.
With (5) and our assumption [2°A| < 4p — 1 we get that
dp—1>bp—4+4+ C5 — Cy,
and via some rearrangement we get that
Co+3>p+Cs,
and via substitution of (4) this gives us

3> 205+ Cy + Co

Lemma 2.7. In Case 14, if |2°A| < 4p and D} = p then Cy+ C5 < 2



Proof. Clearly, if D} = p or D = p then |2°A| > 4p, and so we may assume D) and D5
are both less than p, and so by Lemma 2.4, Lemma 2.5, and (3) we have that

|2AA| 2D5+D4+3p2303+02—4—|—3p.
If we have that 4p — 1 > 3C'3 + C5 — 4 + 3p which implies

By (5) we now have that
Ci+Cy>p—2,

and thus Cy + C5 < 2 by (4). O

Lemma 2.8. In Case 1A if C3 =1 then Cy = Cy = 0.
Proof. If C5 =1 then by (4) and (5) we have that
2p — 2 =20, + C, <20y +2C; +2Cy = 2p — 2
implying C; + 2Cy = 0 and our claim follows. ]

Lemma 2.9. In Case 1A, if C5 =2, Cy =0 then |2°A| > 4p.

Proof. In the case of C3 = 2 and Cy = 0, by (5) and (4) we have that Cy = p — 3 and
so C; = 1. Without loss of generality, let |A4g| = 3, and also |A,| = 3, and |A4,| = 1 for
x # 0. For all other ¢ we have that |A;| = 2. (1) now gives us that

|Bil 2 max {mino{|A;] + |Ai—j| =1 = 2ei5,p} | 0 & {4, Ai-j}}
which implies
|B;| > max{ming{p, |A.| + |Ai—z| — 1}, ming{p, | Ao| + |A;| — 1}},
and because |A,| = |Ao| = 3, and p > 5 we have that
|B;| > 2 + max{|A;_.|, |Ail}.

But now, since xz # 0 it follows that A, # A;_ ., and thus it follows that at least one of
A, and A;_, are not y which then means that at least one of them has cardinality greater
than or equal to 2 meaning for all i we have that |B;| > 4 implying D} = p and thus
|2°A| > 4p.

By Lemma 2.5 we have that Df > 1. O



Combining Lemma 2.6, Lemma 2.7, Lemma 2.8, and Lemma 2.9 we can now do the

following.

Corollary 2.10. In Case 1A, if |2°A| < 4p then C3 =1, Co =p—1,C; =0, and Cy = 0.

Proof. Keep in mind throughout this proof that C'; > 1 by the pigeonhole principle.

If D = p then by Lemma 2.7 we have that C5 + Cy < 2. Thus C5 < 2. Since C3 # 0
we have either C's = 2, in which case Cy = 0 by the inequality or C's = 1 which by Lemma
2.8 implies that Cy = C; = 0.

In the case of C3 = 2 and Cy = 0, Lemma 2.9 implies that |2"A| > 4p.

If D; # p then Lemma 2.6 3 > 2C5 + C; + Cp directly implies C5 = 1, and so by
Lemma 2.8 we have that Cy = C = 0.

Thus, regardless of D} if |2°A| < 4p then we must have that C5 =1, C; =0, Cy =0,
and thus via extension by (4): Cy =p — 1.

[]

With the potential number of 2p + 1-subsets narrowed down in Case 1A drastically,
we ask the reader to note that if |2°A| < 4p then (WLOG via Lemma 1.5) we have that
|Ap| = 3 and |A4;| = 2 for all non-zero i.

Now we must utilize another famous addition theorem.

Theorem 2.11 (Vosper [7]). If A, B C Z, satisfy 2 < |A|, |B| then
|A+ B| <min{|A| + |B| —1,p — 2}

if and only if A and B are arithmetic progressions with a common difference.

From this, we can prove the following

Lemma 2.12. In Case 1A for p > 7, if |2°A| < 4p, then there exists some d for which

each A; is an arithmetic progression of difference d and this d is the same for all A;.

Proof. First, note that if Ay was not an arithmetic progression then by Theorem 2.11,

for p > 7, we would have that

|Bi| > |Ao + Ail > |Ao| + |Ail =5



for all non-zero i, and because |By| > |2°Ag| > 2|A¢] — 3 = 3 we would have that
|2°A| > 5p — 2 > 4p.

Thus, Ap is an arithmetic progression with some difference d.

Since for non-zero ¢ we have |A;| = 2 it is trivial that A; is an arithmetic progression
(let us say with difference d;). But I now claim that if |2°A| < 4p — 1 then for all
d; = d. We can prove this as follows: By Theorem 2.11 observe that for ¢ # 0 we have

1 di=d
|B;| > |Ao| + |Ai]| =1 =5 —¢; where ¢; = . Recall that |By| > 3, and by
0 d+d

Assuming [2°A| < 4p — 1 and letting E be the number of non-zero i for which ¢; = 1 we
have that
dp—1>5(p—1)—E+3=5p—2—E>4dp—1,

and so we equality holds throughout implying £ = p — 1 and our claim is proven. O

By Lemma 1.5 it suffices to consider only when A takes the form
Ay = {0,d, 2d}
for some non-zero d € H. Additionally, for non-zero ¢ define a; such that
A; ={a;,a; + d}.
It should be noted that by (1) that

3 1=0;
4 i #0.
and so if we are to have |2°A] < 4p — 1 then equality must hold in (7) for all .

We now prove some facts regarding our a;.
Lemma 2.13. In Case 1A for p > 7, if |2°A| < 4p — 1 then all of the following hold for
non-zero i,j with i # j:

1. B; =A{a;,a; +d,a; + 2d,a; + 3d},

2. a;+a;_; € Ay = {a;,a; + d},

3. ag; = 2a; + dd for some 6 € {—2,—1,0,1}

4. By = {d,2d,3d}
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. a; +a_; = d.

Proof. With Lemma 2.12 and the above discussion in mind we can prove the statements

as follows:

The first claim follows from the fact that we must have that |B;| = 4, Ag + A; =
{a;,a; + d,a; + 2d, a; + 3d} has size 4 and Ay + A; C B; meaning Ay + A; = B;.

To prove the second claim we see that A; + A;_; = {a; + a;—j,a; + a;—; + d,a; +
a;—j +2d} C B; and since p > 7 this means we must either have that a; + a;_; = a; or
;5 + A;—j; = Q; + d, ie. a; + Qi—j S Az

For the third claim, we similarly observe that 2°A; = {2a; + d} C Bo; = {a9;, a0 +

d, as; + 2d, as; + 3d} and we see our claim follows.

For the fourth claim follows from the facts that |By| = 3 and 2°A = {d, 2d, 3d} C By

like our proof of Claim 1.
For the fifth claim we see that A; + A_; = {a; + a_;,a; + a_; + d,a; + a_; + 2d} C
By = {d, 2d,3d} implying that a; + a_; = d. ]
Let us define p; = M By Lemma 2.13, we have that p; € {0,1} for all

i€[3,p—1]and py € {—2,-1,0,1}.

Thus, we have the recurrence relation a;,.; = a; + a; + p; based on a predefined a;

which gives us

p—1 p—1
d—ay=a_y=ayp_1 =a;+ Z(al +dps) = (p— 1)as + dZui,
i=2 1=2
and so it is implied that
p—1
S =1 modp,
=2
and because the sum cannot exceed p or go below —1, the implication is that Zf;; i =1

exactly.

Because p; > 0 for i # 2 and py € {—2,—1,0,1} we have that the number of ¢ (other
than 2) for which p; = 1is 1 — puy € {0,1,2,3}.

Thus, it follows that, for every a; we have that for some ps < u < 1 — ps we have
that a; — ud € K = (a;) Thus, by the 1st and 4th statements in Lemma 2.13 we have
that for any a € A we there exists an integer u within satisfying pus < u < 4 — us such
that a — ud € K. However, this then implies that there are at most 5 cosets K; of K
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where K; N A is non-empty, and so we have that there is some other subgroup of ZZQ) that

intersects A at most 5 < ;%1 different cosets and so we have as follows:

Lemma 2.14. In Case 1A, forp > 11, if |2°A| < 4p then there is an instance in Case 1B
or Case 2 with |2°A| < 4p. This then implies that if one manages to prove that |2°A| > 4p
in Case 1B and Case 2 then |2°A| > 4p in Case 1A.

With this, we move towards proving that |2°A| in Case 1B and Case 2.

2.2 Case 1B: m < ]%1
Lemma 2.15. In Case 1B, if |2°A| < 4p — 1 then |Ao|(m + 1) — |A] < 2.

Proof. In this case, since |B| > ming{p, 2|A| — 3} = mino{p, 2m — 1}, we guarantee the
existence of at least m — 2 distinct ¢ such that i € T\ S. Let d = |Ag|(m+1) — |A|. Now,
by Lemma 2.1 we have that

Ap—1> |2A] = (m+1)(JAo| = 1)+2p—14 D |Bi| = (m+1)(|Ao|—1)+2p—1+(m—2)
i€T\S

implying
20+ 3> |Al+d=2p+1+d,

and our claim follows. O

Lemma 2.16. In Case 1B, |2°A| > 4p.

Proof. Lemma 2.15 implies that there exists some selection of w,1) € S such that for all
i€ S =8\ {w,} we have that |A;] = |Ap|, and also 2|Ag| — 2 < |Ay| + |Aw| < 2| Ayl

From this and (1), we may deduce that

2|1A,] =3 i=2w;
Bil > 4214, —3 i =2y; (8)
2|Ag| — 3  otherwise.

Additionally, via 1.2 there must exist at least ming{2|A| — 1,p} = 2m + 1 distinct x €
[0,p — 1] such that © = i + j for some (not necessarily distinct) i,j € Sy Let the set of
such z’s be X. We account for m—+ 1 of these via 0+i = i for ¢ € Sy, and so using Lemma
2.1, (8), the facts that (m+1)|A¢| = 2p+1+d, |Au|+|Ay| > 2|Ao| —d, |Ao| < (p+1)/2,
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and m < (p — 1)/2 we have that

2°A] > (m+1)(|A| - 1) +2p -1+ > |By|

i€X\So
> (m+ 1)(|Ao] = 1) +2p — 1+ (m — 2)(2/ o] — 3) + (2]4u] — 3) + (2 Ay| — 3)
=dp+d—(m+1)+(m—2)(2[A0] = 3) + (24| = 3) + (2| Ay[ - 3)
=dp+d—m—1+ (2m|Ao| — 4|Ag| — 3m + 6) + (4|Ag| — 2d — 6)
=4dp+2m|Ag| —4m —d — 1
=4dp+2(m+1)|Ag| —4m —d — 1 — 2| Ay

=8p+d+1—-24|-4m>8+1—(p+1)—2(p—1)=5p+2>4p.

Our claim now follows from the above and Lemma 2.15. ]

3 Case 2: [Ay| > 7%3

In this section, we yet again introduce more terminology. Let ¢ be the number of non-
zero i for which |Ag| + |A;] — 1 > p, and let s be the number of non-zero ¢ where A; is
non-empty and |Ag| + |4;| — 1 < p. It follows that m = ¢+ s. This distinction is made as
¢ is the number of ¢ € S for which |Ag + A;| is guaranteed to have size p per Theorem 1.2.

We now will move towards proving a Lemma akin to Lemma 2.1, but instead for Case 2.

Lemma 3.1. In Case 2, |2°Ay| = p.

Proof. From Theorem 1.3, we have that

. . . p+3 :
p Z |2 A0| Z man{z’A0| - 37p} Z ming {ZT - 37p} = man{pap} =D

Lemma 3.2. In Case 2,

2°A] > (14 1)p+ s|Ao| + Y |Bil.
i€T\S

Proof. Keeping (1) and specifically Theorem 1.2 in mind we have that

24 =D |Bi| =Y _|Bi|+ > |Bi| = 24|+ Y _|Bil+ > _ |Bil,

i€Tp 1€50 1€T\S ies 1€T\S
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and now with Lemma 3.1 we get that

12" A ZP+Z|B¢|+ Z ’Bi|2p+Z|AO+Ai|+ Z | By

ics i€T\S ics i€T\S

> (I+1p+sldol + > |Bi|.
i€T\S

We now will demonstrate that, for each value of ¢ we have that |[4"A| > 4p

Lemma 3.3. In Case 2, If { > 3 then |2°A| > 4p.

Proof. From Lemma 3.2, if £ > 3 then

2°A] > dp + 5| Ao + D |Bi > 4p.

i€T\S

For ¢ < 2, we must often provide special consideration to smaller values of s.

Lemma 3.4. In Case 2, If { =2 and s > 2 then |2°A| > 4p.

Proof. From Lemma 3.2, if £ = 2 then

. +3
2A] > 3p + s|Ao| + > |Bi| Z3p—|—sp2 :

i€T\S

and so if s > 2 then |2°A| > 4p. O

Lemma 3.5. In Case 2, If { =2 and s = 1 then |4 A| > 4p.

Proof. In this case we may define 3,7, and § to be the three distinct elements of [1, p— 1]
such that Ag, A,, and A; are not empty satisfying

|Ao] > |Ag| > |Ay] > p+1—|Ao| > |45
and

[Aof + [Agl + A, [+ |A5| = 2p + 1.
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These conditions intersect to give us that
p+1<p+1+|A45+ |A7|

or

p < [Ag| +[A,],
and thus [Ag| > 2.

Now see that

52{07/87775}

and

B+S={p,28,6+~0+0}

must not be the same set as this would imply that the sets have that same sum, and thus
45 =0

which cannot be as § # 0. Thus, for some ¢ € S we have that §+.€ T\ S. If 1 = f

then it is seen that
Basdl = 1 Busl > 12°45] > 2045] =3 > |45] + L2 > |
as p > 5. It is also observed that if ¢ # [ then
Bl > [Ag| + [A] — 1 > [Ag].
Regardless, |Bgy,| > |Bg| > £t
Thus, by Lemma 3.2 we have

12°A| > 3p+ |Ao| + | Bs+| > 4p+2 > 4p.

Lemma 3.6. In Case 2, If { =2 and s = 0 then |2°A| > 4p.
Proof. We let S = {f,~} such that
p 2 [Aol = |As] = A, = 1.
By Theorem 1.2, there are at least 5 distinct elements in the set
2{0, 8,7} ={0,8,7,8+7,28,27}.
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Since 0, 8, are distinct by Lemma 3.2 we then have that
2°A[ > 3p + | Bag| + | Bay| + | Bgy| — max{|Bag|, | B2y |, [ By5(}-

Note now that because |Ag|+|Ag|+|A,| = 2p+1 and |Ay| < p we have that |Ag|+|A4,| >
p+ 1, and so we have that

[Baial = 145+ A > [Ag] + A, — 1 = p.
This then gives us that
2A] > 3p+ | Bysl + |Boy| > 3p+ [245] + 274,

> 3p + ming{p, 2|Ag| — 3} + mine{p, 2|A4,| — 3}.

Thus, if [2°A| < 4p — 1 then we must have that
12°A| > 3p+2|Ag| +2|A,| —6>5p—4 > 4p.

]

For the case of £ = 1 we let 5 be the unique element of S such that |Ag|+|Ag|—1 > p.

Lemma 3.7. In Case 2, If { =1 and |2°A| < 4p — 1 then either

1. s=1 or

2. s =2 and |Ag| = |Asl.

Proof. Note that s # 0 as we must have that 2 <m =/(+s=s+ 1.

We now observe that

A=) Bl =2p+ Y (Bl =2p+ Y [Ae+ Al =20+ D (Aol +]A] - 1)
i€So i€S\{B} ieS\{8} ieS\{B}

= 2p+ s(|Ao| = 1) + (JA] = [Ao| = |A5]) = 4p + (s = 1)([Ao| — 1) — |A4].

If s > 3 we have that

2°A] = 4p + 2([Ao| = 1) — [Ap| = 4p + [Ao| — 2 = 4p.
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If s =2, let us define § = |Ag| — |Ap| and see that
[27A] = dp + (JAo] = 1) — |Ag| = dp — 1+,
and so if § # 0 (or equivalently |Ag| = |Ag|) then [2°A| > 4p.

Our claim now follows. O

Lemma 3.8. In Case 2, if { =1 and s = 2 then |2°A| > 4p.

Proof. In this case, consider the typical coset partition A = Ay U Ag U A, U A5 with
[ Aol > [Ag] > p+ 1 —[Ao| > |A,],]|As]*

By Lemma 3.7 we also have that |Ay| = |Ag| and so

. : . p+3 :
| Bag| > |2°Ag| > ming{2|As| — 3, p} > min, {ZT,p} > ming{p, p} = p.

If 26 & {~,d} then we have that {0, 5,~,d,25} are distinct and so we have that
2°4] 2 |Bol + | Bl + | Bas| + 1By + 1Bl = 39+ 20 4o| = dp+3 > 4.
Assume WLOG then that 6 = 2. This then implies {0, 3,20, v} are pairwise distinct.
If 0 + 8 is also pairwise distinct from these four then we similarly obtain
24 > |Bol + [ Bal + | Basl + By| + |Basal > 3p+2040] = dp+ 3 > dp.
Thus, if |2°A| < 4p—1 then §+ 5 € {0, 5,28,~}, but clearly we cannot have 6+ 5 = 3

or 6 + 3 = 28 We additionally see that § + 5 # 0, as this would mean that 35 = 0 which
cannot be as p > 5 and 3 # 0.

Thus, if [2°A| < 4p — 1 then § + § = v which implies that 34 = 7 and so
So = {0, 8,25,38}
in which case (implied by the fact that p > 5) gives us
2°Al = | Bo| + [Bg| + [Bag| + [Bss| + [Bas| = 3p + [ Bs| + | B

> 3p+ 2| Ao| > dp +2 > 4p.

4Unlike the case of £ =2 and s = 1 we may have that |A,| < |As|.
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Lemma 3.9. In Case 2, if { =1 then s # 1.

Proof. We have the coset partition A = Ay U Ag U A, with
[Ao| = [Ag| = p+ 1 —|Ag| > [A,]

and
[ Aol + [Ap] + A, =2p + 1.

Together, these imply that |Az| > p, which cannot be. ]

We now move to the final case: ¢ = 0.

Lemma 3.10. In Case 2, if { =0 then |2°A| > 4p.

Proof. 1f £ = 0 then it follows that for all non-zero ¢ we have |A4;| + [Ag] =1 < p—1, and
since |Ap| > 222 we have that
-3
4 <222,
2

Additionally, observe that for any j € S we have that

p—3
2+ 1= Al =) |A] = (Ao + |4+ IAi|§p+(S—1)T,
i€Soy i€S\{j}
and so we have that 5 5 .
s 14 P2 g, O o3
p—3 p—3

and so we must have s > 4.

We now use (2), Lemma 3.1, and (1) to get

241 =) |Bi 2 2740+ [Aot Al = pt) (| Ao+ Ail=1) = ps(|Aol—1)+(| Al | Ao])

i€y ieS €S
= 3p+ (s — 1)(| 4| — 1).
We now recall that s > 4 and |Ag| > ’%3 and so we have that

2°4] > I9p+9

> Op/2 > 4p.

Lemma 3.11. In Case 2, we have that |2°A| > 4p.
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Proof. If £ > 3 then our claim follows from Lemma 3.3. If ¢ = 2 then our claim follows
from Lemma 3.4, Lemma 3.5, and Lemma 3.6. If £/ = 1 then our claim follows from
Lemma 3.7, Lemma 3.8, and Lemma 3.9. Lastly, if / = 0 then our claim follows from
Lemma 3.10. [

4 Conclusion

With this, we have that regardless of m or |Ag|: [2°A| > 4p for all A C Z2 for p > 11
and |A| = 2p+ 1 and so Theorem 1.4 is proven for all p except p = 5,7. Using [(] with a
powerful enough computer verifies the theorem for these two values of p, completing the

proof of Theorem 1.4.

While this result is a major step forward, the author advises caution for a reader
who wishes to generalize this result using the methods in this paper. There are two
potential directions for generalization. The first is relaxing the condition of G = ZZ to
G = Zj, for some r. While Case 1B (and to a lesser extent Case 2) seem capable make
this generalization with only a few minor issues, Case 1A’s reduction to the other two
cases relies explicitly on both H = Z, and G/H = 7Z, which is only possible in the case
of G = Zi. In order to prove that p(Z;, 2p + 1) = 4p is true for a sufficiently large p, a

new method must be developed for Case 1A.

Regardless, the author believes that Theorem 1.4 generalizes in its entirety. Specifi-

cally:

Conjecture 4.1. If p > 5 is prime then

p(Zy, 2p + 1) = 4p.

The second way that the results of this paper can be generalized is by determining
p(Zi,kp + 1) for & > 3. Like before, Case 1B seems to generalize rather nicely, and
Case 1A also does not appear to have any outstanding issues regarding its generalization
(except perhaps, a stricter lower bound on when Lemma 2.14 reduces the problem to
Cases 1B and 2). The problem occurs when examining Case 2. Here, to prove that Case
2 cannot provide a counterexample to p(Zf,, 2p 4+ 1) = 4p we considered each value of ¢,
one at a time. However, if one were to go out and prove, say p(Zf,,?)p + 1) = 6p they
would need to consider ¢ < 4 if they wanted to directly adapt the methods used in this
paper. And if one wishes to consider the general case of proving that p(Zf,, kp+1) = 2kp
then they will need to consider every case when ¢ < 2kp — 2 which will require a less

“brute force” approach than what is used in Section 3.
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Another natural question following the results of this paper is to solve the correspond-
ing “inverse problem” of Theorem 1.4, ie. the problem of classifying all 2p+ 1-sets A C Zg
such that [2°A| = p(Z2,2p + 1) = 4p. The equivalent problem for sets of size p + 1 was
solved in [1] as follows.

Theorem 4.2 (Eliahou and Kervaire [1]). For prime p > 5 and A C Z if |A] = p+1
and |2°A| = 2p then there exists an order p subgroup Z < Zj, such that A is the union of

a coset of Z and a single element outside of said coset.

We believe that our case is rather similar and offer the following conjecture:

Conjecture 4.3. For prime p > 7 then for A C ZI% if |A| =2p+1 and |2°A| = 4p then
there exists an order p subgroup Z < Zg with canonical homomorphism ¢ : Zi — Z such
that ¢(A) is an arithmetic progression of length three and that there is a unique element
a € A such that A\ {a} is the union of two cosets of Z.
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